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Abstract Increasing attention is being paid to environ-
ment characterisation as a means of identifying the
environmental factors determining grain protein content
(GPC) in durum wheat. New insights in crop physiology
and agronomy have led to the development of crop
simulation models. Those models can reconstruct plant
development for past cropping seasons. One major
advantage of these models is that they can also indicate
the intensity of limiting factors affecting plants during
particular developmental stages. The main environmental
factors determining GPC in durum wheat can be
investigated by introducing the intensity of limiting factors
into genotype × environment (G×E) models. In our case,
limiting factors corresponding to water deficit and nitro-
gen availability were calculated for the development
period between booting and heading. These variables
were then introduced into a clustering model. This model
is an extension of factorial regression applied to discrete
environment and genotypic variables. This procedure
effectively described the environment main effect: around
30.9% of the sum of squares of the environment main
effect was accounted for, using less than 33% of the
degrees of freedom. It also partially accounted for G×E
interaction. Our methodology, coupling the use of crop
simulation and G×E analysis models, is of potential value
for improving our understanding of the main development
stages and identification of environmental limiting factors
for the development of GPC.

Introduction

Genotypes grown in multi-environment trials may react
differently to a range of climatic conditions, soil
characteristics or technical practices. These differential
responses of genotypes in different environments are
known collectively as the genotype × environment (G×E)
interaction.

Formal ANOVAs demonstrate the existence of G×E
interaction but do not provide sufficient information for
analysis of the differences in response of individual
genotypes to each environment. Several approaches and
models have been developed for analysis and interpreta-
tion of the G×E interaction. Yates and Cochran (1938) and
Finlay and Wilkinson (1963) were among the first to
propose a regression-based procedure for relating geno-
typic performance to an environmental index. This
approach resulted in the classification of genotypes into
three classes: varieties well adapted to favourable
environments, varieties adapted to unfavourable environ-
ments and genotypes that are non-specific or display
intermediate levels of adaptation. One major problem with
this type of regression analysis is that the proportion of the
interaction accounted for by the heterogeneity of regres-
sion is generally low. Furthermore, environments may be
considered favourable or unfavourable, but these notions
provide no useful information for biological interpretation
of the G×E interaction.

Multiplicative models provide a more advanced ap-
proach to the analysis of G×E interaction. First formalized
by Gollob (1968) and Mandel (1969), these models make
it possible to quantify the specific adaptation of one
genotype to one environment. The interaction term is
broken down into a sum of products involving genotype
and environment parameters. These parameters are
estimated by performing an analogous procedure, such
as principal component analysis, on the residuals of the
additive model summarising the G×E matrix in two
dimensions. The additive main effects and multiplicative
interaction [(AMMI), Gauch 1992; Vargas et al. 1999]
procedure provides useful information for the analysis of
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genotypic and environmental stability. As for joint
regression, the analysis is performed a posteriori and
provides no explanation of the origins of G×E interaction.
Interpretation of the results obtained with multiplicative
models requires the identification of external information
matched to predefined groups of genotypes or environ-
ments. Then, environmental variables can be added in an
AMMI biplot (Reynolds et al. 2002).

If information concerning external environmental (or
genotypic) variables, such as meteorological data, ear-
liness or time to flowering are available, these variables
may be correlated to or regressed on the environmental
scores estimated by factorial regression (Denis 1989),
biadditive factorial regression (Denis 1991) and clustering
models (Denis and Vincourt 1982). Factorial regression
models are usually linear models accounting for G×E
interaction by differential cultivar sensitivity to explicit
external environmental variables. The influence of these
external variables on G×E interaction can be tested
statistically. Environmental characteristics are regressed
on main additive effects and/or interaction terms (Bran-
court-Hulmel et al. 2001; Foucteau et al. 2001). Factorial
regression approaches can be carried out with software
such as the INTERA package (Decoux and Denis 1991).
The relevance of the regression variables depends on the
percentage of the sum of squares of main effects and
interaction terms explained by these variables and the
number of degrees of freedom involved in the analysis
(Brancourt-Hulmel et al. 1997). Biadditive factorial
regression uses linear combination of environmental
factors as regressors on G×E interaction (Brancourt-
Hulmel and Lecomte 2003). Clustering analysis is based
on the same principles as factorial regression, since the
environmental (or genotypic) covariates are not continu-
ous, but are instead discrete variables, related to classes of
intensity of these variables. Although clustering models
and factorial regression may potentially provide a biolog-
ical interpretation of the environment main effect and G×E
interaction, the efficiency with which these analyses
explain the interaction depends on the nature of the
covariates (Desclaux 1996).

The covariates can be collected on special genotypes
chosen for their known reaction to environmental factors.
Data collected on well-known genotypes, ‘the probe
genotype approach’, avoid the necessity for the direct
measurement of environmental data and generates covari-
ates corresponding directly to the factors limiting plant
development (Brancourt-Hulmel et al. 2000; Desclaux
1996).

Recent decades have seen a number of new develop-
ments in crop physiology and agronomy, and some
integrated approaches to crop simulation modelling have
been developed. Such approaches make it possible to
reconstruct the plant development cycle and to determine
whether a stress occurred at any given development stage.
This approach can be extended to a number of past
cropping seasons. Nevertheless, this promising approach
requires the collection of meteorological data and their
integration into crop simulation models. There is currently

no example of use of information derived from crop
simulation models to analyse G×E interaction.

The aim of this study was to develop a methodology,
using information derived from crop simulation and G×E
models, to account for variation in the grain protein
content (GPC) of durum wheat varieties evaluated in a
multi-environment network.

We aim to show how information derived from crop
simulation models can be used to interpret both environ-
mental effect and the adaptation of a given genotype to
specific environments. We illustrate this method using
durum wheat GPC data.

Materials and methods

Data collection

The data set was obtained from the French ‘Comité
Technique et Permanent de la Sélection’ network; it
included a total of 111 site-by-year combinations and 48
genotypes evaluated over 8 years. The study sites were
located between 43.3°N and 45.4°N and at longitudes of
−0.57° to 5.9°. Each genotype was tested in at least two
cropping seasons (i.e. a biennial network) from 1992/1993
to 1998/1999. Only two varieties, Ardente and Néodur,
were grown in every environment in all 8 years. In each
biennial network, 6–12 varieties were tested over 11–21
environments. If a site was present in a given network in
two consecutive years, it was considered as two distinct
sites.

Each trial consisted of two replicates, with a plot size of
approximately 10 m2 for each genotype. Each trial was
treated with fungicides. The experimental design was
either a split plot or a crisscross design. The traits
measured in each trial plot were heading date, grain yield,
thousand kernel weight, kernel weight per metre squared
and GPC. In the field, lines were considered headed when
50% of the spikes had emerged from the flag leaf. GPC
was determined by Kjeldahl’s method. We used a 1-g
sample taken from the 3 kg of grain harvested in bulk for
N analysis.

The data collected for each environment included
climatic data (daily temperature, rainfall), cultural prac-
tices (fertilisation and irrigation) and soil characteristics
[texture, depth and useful water reserve (UWR)].

Plant nitrogen nutrition and development stage

The booting-to-heading stage has been reported to be one
of the most critical phenological phases for grain devel-
opment. Nitrogen uptake increases dramatically during
this period to reach a maximum accumulation rate (Gate
1995). We therefore focused our attention on this period of
the plant cycle—the booting-to-heading stage.

As only heading date was recorded, a thermal
(expressed in degree days) and vernalophotothermal
index (Gate 1995), was used to estimate booting stage
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and to calculate the date and duration of the booting–
heading period.

The duration of the booting-to-heading stage was
simulated for each environment. Sowing and heading
dates were available for all trials, whereas the booting
stage was estimated according to the crop phenological
schedule described by Gate (1995). As the mean heading
date for the variety Néodur was close to the mean for the
series of varieties (less than 1 day away from the mean,
with a standard deviation of 1.1 days), this variety was
used to characterise plant phenology at each site. There-
fore, growth requirements for the variety Néodur were
used for these simulations.

Agronomic diagnosis

Climatic covariates were calculated for the booting-to-
heading stage in each environment.

Each location was characterised climatically, using data
from the nearest meteorological station (less than 20 km
away) for temperature, radiation, rainfall and potential
evapotranspiration (PET). The difference between maxi-
mum evapotranspiration (MET) and real evapotranspira-
tion (RET) provided a daily estimate of water deficit
(WD): WD=RET−MET. In this formula, MET=kcPET,
where kc, the plant development index, was fixed at 1.2
for the booting-to-heading stage. RET was therefore
calculated as a function of MET and water supply (WS)
for the plant (RET=MET+WS). Water supply was
estimated by calculating UWR, and precipitation (P). We
considered that WS(t)=UWR(t − 1)+P, with the UWR at
time (t−1) represented as UWR (t −1). Based on UWR
values, the amount of available moisture (AM) was
calculated and compared with WS. If WS(t)>AM, no
WD occurs and RET(t)=MET(t). In addition, when
WS<AM, RET(t)=MET(t)+WS/AM (Gate 1995). In
these calculations, according to Soltner (2000), we
assumed that AM is equivalent to 60% of the UWR.

Experimental sites were classified according to the
intensity of WD occurring during the booting-to-heading
stage. Three classes of WD, representing a gradient of
water stress intensity, were defined—locations with no
WD during the booting-to-heading stage, locations with a
cumulative WD of 0–40 mm and experimental sites with a
WD greater than 40 mm.

The availability of nitrogen to the plants was also
considered. The application of nitrogen during the boot-
ing-to-heading stage was described by the variable
SOLUB. SOLUB is 0 if no nitrogen was given during
this period or 1 if at least one nitrogen application was
performed.

A synthetic variable SOLWD was generated from the
variables WD and SOLUB to simultaneously take into
account water and nitrogen status during the booting-to-
heading stage. From the three WD groups and the two
SOLUB groups, we generated six SOLWD groups by
subdividing the groups generated for WD and SOLUB.

Statistical methods

We began by using the Néodur and Ardente data set. An
ANOVA (GPC = year + region + variety) was performed
to compare the magnitude of the factors ’year’ (eight
levels) and ‘region’ (two levels, southeast and southwest).
This analysis was carried out using the SAS procedure
GLM (SAS Institute 1996).

Secondly, for each biennial data set, we fitted a fixed
ANOVA model using INTERA software (Decoux and
Denis 1991). All analyses were conducted with two
primary effects, genotype, and environment. The residual
term included a G×E interaction, because data for a given
variety were not repeated at a given location.

Clustering model

The clustering model (Denis and Vincourt 1982) provides
a tool to explain variables (here GPC) by grouping
locations. These groups can be defined on the basis of
external information, such as stress indices. The clustering
procedure compares sum of squares generated by grouping
together locations or genotypes with respect to main
effects and interaction terms. The general equation of the
model is as follows:

Yij ¼ �þ �bs þ �w
i þ �bt þ �w

j þ �bbst þ �bwsj þ �wbit þ �wwij

where α is the genotype main effect, β is the environment
main effect, and θ is the G×E interaction term.

Within this formula, s and t refer to the group level of
genotypes and environment, respectively. Indices b and w
stand for ‘within’ and ‘between’ group. Finally, i refers to
the ith genotype and j to the jth environment. The additive
model is included in this model as αi=αs

b+αi
w and

βj=βt
b+βj

w.
The components between (B) and within (W) are

readily comprehensible. The term αb represents the
variation between groups with levels constant, whereas
αi

w only accounts for variation within groups. The mean
of αi

w was zero.
Ultimately, to recover the full interaction model we add

the term θ ij= θst
bb+θsj

bw+θit
wb+θij

ww.
Where θbb is the interaction term between groups of

genotypes and groups of environments and θww the
residual variation. The θbw and θwb terms are not readily
comprehensible. They correspond to the interaction
between groups of genotypes within one group of
environments and vice versa. The efficiency of a model
is defined as the ratio of the percentage of the sum of
squares of main effects and interaction explained by the
model to the percentage of degrees of freedom used. This
analysis was performed for either the environment main
effect or the residual term including both a pure error term
and G×E interaction (software INTERA, Decoux and
Denis 1991).
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Multiplicative model

The papers by Gollob (1968) and Mandel (1969) describe
the basis of multiplicative models. In this approach, the
interaction term (θij) is partitioned as:

�ij ¼
X

lnunivnj þ rij

where ∑ is the sum of the n=1, 2, . . . , N axis included in
the model; ln is the singular value for the axis n; uni and vnj
are the genotype and location eigenvectors, respectively,
for the axis n; and rij is the residual term. The results of
multiplicative analysis can be presented graphically in the
form of biplots, in which the genotypic and environment
scores of the first or second bilinear (multiplicative) terms
are plotted against genotypic and environment main
effects. A comparison of genotypic and environmental
biplots provides an interpretation of the level of adaptation
of genotypes to environments when multiplicative terms
(genotypic and environmental) do or do not have the same
sign and intensity. Multiplicative analysis was performed
with INTERA software (Decoux and Denis 1991).

Results

Environmental covariates

No WD was detected during the booting-to-heading stage
at 56 of 111 locations. Intermediate stress intensity (0–
44 mm) was observed at 44 locations, whereas severe
stress (>44 mm) affected 11 locations during this period of
the plant cycle. We plotted, for Néodur, the relationship
between thousand-kernel weight and kernel number per
meters squared of every trial plot (Fig. 1). Each WD group
is shown in these diagrams; the more intense the WD, the
greater was the decrease in kernel number per m2.
Therefore, the definition of three WD groups was
consistent with the expected effects on yield components.

Nitrogen was applied to the crop during the booting-to-
heading stage (variable SOLUB) in only 22 of the 111
environments. This cultural practice was not observed in
the first two biennial networks and was rare in the
1994/1995 network (12% of the environments). In other
networks, it occurred at 35–50% of the sites, and the

Table 2 Clustering analysis for GPC of Ardente and Néodur over
111 site-by-year combinations. SOLUB Nitrogen availability, WD
water deficit, SOLWD combined availability of water and nitrogen

SOLUB WD SOLWD

SS env (%)a 6.0 20.5 23.1
df 1 2 5
SS tot (%)a 0.2 18.8 21.1
aSSenv percentage of explanation of environment main effect, SStot
percentage of explanation of total variation

Fig. 1 Effect of water deficit on yield components for Néodur for every trial plot

Table 1 ANOVA for grain protein content (GPC) of Ardente and
Néodur over 111 site-by-year combinations. TSS Total sum of
squares explained by the factor

Source of variation df Mean square TSS (%) F-value P>F

Year 7 30.1 31.2 14.3 <0.0001
Region 1 17 2.5 8 0.005
Variety 1 0.1 0.05 0.04 0.83
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amount of N fertiliser applied was between 30 kg/ha and
60 kg/ha.

GPC variation

The GPC values obtained for the two genotypes grown at
each experimental site (Ardente and Néodur) were
normally distributed and varied from 10% to 20%, with
a mean of 14.5%. In classical ANOVA, only the region
and year effects were significant, accounting for 2.5% and
31.2% of total sum of squares (TSS) explained by the
factor, respectively (Table 1).

Clustering analysis was then used to compare the
relevance of environmental descriptors in accounting for
variations with that of the traditional ‘year’ and ‘region’
factors (Table 2). We included three environmental
covariates (WD, SOLUB and SOLWD) in this analysis.
WD accounted for 18.8% of total variation in GPC,
whereas the availability of nitrogen (SOLUB) accounted
for 0.2%, and the combined variable (SOLWD) accounted
for 21.2% of total variation. SOLWD is therefore almost as
relevant as ‘year’ for explaining variations in GPC.

Biennial network analysis

GPC variation was similar to that reported previously,
ranging from 9.3% to 20%, with a mean of 13.5%. Mean
GPC for all varieties was highest in 1997, reaching 15.7%,
and lowest in 1994 (12.6%).

Environment had the strongest effect, accounting for
73.6–87.8% of the TSS in ANOVA (Tables 3, 4). The
genotype and residual effects were of similar magnitude,
accounting for 7.7–15.9% and 4.5–15% of the TSS,
respectively.

GPC tended to increase with WD, as shown by the
mean value of GPC for each environment (Table 5). As
expected, the application of nitrogen fertiliser during the
booting-to-heading stage seemed to increase GPC. How-
ever, in both cases, the difference was not found to be
significant, because the standard deviation was too large
(Table 5).

Clustering analysis on environment main effect

Covariate classes were added for clustering analysis on
each of the seven biennial networks (Table 6). According
to the network data set analysed, WD (three classes)
accounted for 0–47.3% of the environment main effect
(ESS), with a mean of 26.9%. The efficiency of the

Table 3 ANOVA for genotypes
evaluated on biennial networks.
SS Sum of squares

Source of variation 1992/1993 1993/1994 1994/1995 1995/1996 1996/1997 1997/1998 1998/1999

SS df SS df SS df SS df SS df SS df SS df

Genotype 33.3 6 28.3 5 32.7 8 64.6 9 55.2 7 65.2 11 34.5 10
Environment 109.4 10 177.5 13 332.9 18 299.2 20 299.0 14 738.7 15 238.1 14
Residual 25.1 60 32.5 65 52.6 144 42.5 180 31.7 98 37.5 165 47.8 140

Fig. 2 Occurrence of WD and
explanation of environmental
main effect

Table 4 ANOVA for genotypes
evaluated on biennial networks.
Results are expressed as a per-
centage of total variation ex-
plained

Source of variation 1993/1994 1994/1995 1995/1996 1996/1997 1997/1998 1998/1999 Mean

Genotype 11.9 7.8 15.9 14.3 7.7 10.8 12.6
Environment 74.5 79.6 73.6 77.5 87.8 74.3 76.1
Residual 13.6 12.6 10.5 8.2 4.5 14.9 11.3
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clustering to account for ESS was closely related to the
occurrence of water deficit. In terms of percentage of ESS
explained, the efficiency of clustering procedure increased
when the frequency of sites displaying a WD was higher
(Fig. 2). For example, if 80% of the locations displayed no
water deficit, as in 1993/1994 or 1998/1999, WD
accounted for 0% of the ESS. In contrast, the percentage

of ESS accounted for was maximal (about 45%) when WD
occurred at 40% of the sites (1996/1997).

If nitrogen was applied after booting, as occurred in five
biennial networks, it accounted for 0–23.6% of the ESS,
with a mean of 4.3%. The percentage of ESS accounted
for is influenced by the percentage of trials receiving
fertiliser. The efficiency of clustering was maximal when
only 15% of the trials received fertiliser, and decreased

Table 6 Clustering analysis for GPC of genotypes evaluated in biennial networks. Results are percentage of the sum of square of
environment main effect explained. Degrees of freedom are given in parentheses. NS number of sites

1992/1993
(NS=11)

1993/1994
(NS=14)

1994/1995
(NS=19)

1995/1996
(NS=21)

1996/1997
(NS=15)

1997/1998
(NS=16)

1998/1999
(NS=15)

Mean SD

SOLUB 0 (0) 0 (0) 23.6 (1) 4.3 (1) 0 (1) 2.5 (1) 0 (1) 4.3 8.0
WD 18.6 (2) 0 (1) 47.3 (2) 32.4 (2) 45.5 (2) 44.2 (2) 0 (2) 26.9 19.3
SOLWD 18.6 (2) 0 (1) 51.3 (3) 34 (3) 50.8 (4) 61.3 (5) 0 (4) 30.9 23.3

Table 7 Clustering analysis for GPC of genotypes evaluated in biennial networks. Results are percentage of the sum of squares of residual
and interaction effect explained and percentages of degrees of freedom absorbed are given in parentheses

1992/1993 1993/1994 1994/1995 1995/1996 1996/1997 1997/1998 1998/1999

WD 0 0 26.4 (11%) 17.4 (10%) 0 26.6 (13.3%) 0
SOLUB 0 0 0 0 0 0 14.4 (7.1%)
SOLWD 0 0 26.4 (16%) 0 43 (28.6%) 0 0

Fig. 3 Occurrence of nitrogen applications (SOLUB) and explanation of environmental main effect explained by SOLUB

Table 5 Effect of environmen-
tal factors on GPC for all sites
and all genotypes (SD standard
deviation)

WD Nitrogen application

No WD 0<WD<40 mm WD>40 mm No Yes

GPC mean 12.9 13.8 14.8 13.2 14.1
GPC SD 1.3 1.2 1.8 1.4 1.4
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Fig. 4 Multiplicative analysis of grain protein content for the biennial network 1997/1998. Multiplicative and main effects are displayed a
for environments and b for genotypes. The relative precocity of genotypes is indexed from (1) for the earliest to (12) for the latest
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steadily as the percentage of trials receiving fertiliser
increased (Fig. 3). The resulting combined variable,
SOLWD (six classes), accounted for 0–61.3% of the
ESS, with a mean of 30.9%.

Clustering analysis on G×E interaction

WD accounted for up to 26.6% (1997/1998) of residual
sources of variation (including G×E interaction) and
SOLWD up to 43% (Table 7). The covariates WD and
SOLWD accounted for part of the residual variation in
three and two biennial networks, respectively. In these
cases, such information could be useful for the interpre-
tation of genotypic behaviour in a biplot based on a
multiplicative model. We illustrated this by performing
multiplicative analysis for the 1997/1998 network (Fig. 4a,
b).

For the 1997/1998 network, the first (MT1) and second
(MT2) multiplicative terms accounted for 39.8% and
18.9% of the residual variation, respectively. A biplot
representation of environment and genotypic main effects
against the multiplicative genotypic and environmental
second term, MT2, was drawn (Fig. 4a, b) and additional
information concerning WD clustering was added. Over-
all, the multiplicative term, MT2, differentiated sites under
stress from those with no water stress (Fig. 4a), whereas
the plots of genotypes depended primarily on earliness
(Fig. 4b). Comparison of the two biplots suggested that
early lines produced higher GPC than later lines under
stress.

Discussion

Crop simulation models use agronomic and meteorologi-
cal data collected over past cropping seasons to provide
source elements for the reanalysis of past networks,
without additional measurements. To illustrate this point, a
large network (8 years, 111 locations, 48 genotypes) was
analysed according to environmental conditions during the
booting-to-heading stage, which is a key phase in the
development of grain number and nitrogen accumulation.
The analysis performed on the two genotypes tested in
each location indicated that defining an environment in
terms of limiting factors at this phenological stage was
almost as relevant for explaining GPC as the simple but
robust analysis of year and region. Based on the analysis
of all genotypes, we identified two environmental
parameters as most discriminatory for grain protein
content: WD and nitrogen availability during the boot-
ing-to-heading stage.

However, stress during the booting stage may be
correlated with limiting factors occurring during other
developmental stages. Thus, stress at booting may be only
indicative of other stresses occurring later in the life cycle
of the plant. Nevertheless, the GPC was consistently
explained by SOLWD (five of the seven biennial networks
tested), demonstrating the importance of this variable. The

reason for fluctuations in the percentage variation
accounted for by WD (and hence SOLWD) may lie in
the strong correlation with the number of trials in which
WD occurred. This suggests that water deficit, when it
occurs, is the most discriminating environmental factor
accounting for variation in GPC. WD probably exerts its
effects by reducing the number of grains per metres
squared. These results confirmed the importance of water
and nitrogen supply to development of GPC at the booting
stage and are consistent with previous observations
(Ottman et al. 2000; Strong 1982; Wuest and Cassman
1992).

These environmental covariates probably also account
for G×E interaction. However, we underestimated the
relevance of these variables for interpreting G×E, as we
had to pool interaction terms and pure residual variation
when estimating the sum of squares. Our diagnosis also
provided us with a tool for the interpretation of G×E
interaction. The multiplicative model gave an evaluation
of the specific adaptation of genotypes to environments.

Conclusion

The originality of our work lies in the calculation of
covariables corresponding to limiting factors in the plant
cycle. These covariables may be introduced into G×E
interaction models such as clustering models. By calculat-
ing water and nitrogen availability we were able to explain
variations of GPC. Thus, our approach has the potential to
provide us with an understanding of the environmental
bases of phenotypic plasticity and local adaptation. This
work focused on a particular stage of development—the
booting-to-heading stage. Limiting factors may also
influence the development of GPC at other developmental
stages. We need to extend our analysis to the entire life
cycle of the plant to determine which developmental
stages are discriminant for GPC. This could lead to the
identification of several developmental stages as being
critical for the development of GPC. Further investigations
are required to determine the genetic bases of phenotypic
plasticity and local adaptation. This should lead to the
identification of quantitative trait loci (QTLs) involved in
the response to limiting factors. This approach is now
possible, by means of factorial regression analysis to
account for variation in the additive effects of QTLs on
material evaluated in several environments. Our method
can also be used to screen evaluation networks for
redundant locations. By characterising each site in terms
of the frequency of limiting factors occurring during
various developmental stages, it should be possible to
identify sites at which similar stresses occur.

Acknowledgements We would like to thank Philippe Gate for his
active participation and the Arvalis Institut du Végétal for providing
the climatic data and software necessary for the analysis. We also
thank Christelle Crespin for providing the experimental data from
the CTPS network.

1639



References

Brancourt-Hulmel M, Biarnès-Dumoulin V, Denis J-B (1997) Points
de repère dans l’analyse de la stabilité et de l’interaction
génotype-milieu en amélioration des plantes. Agronomie
17:219–246

Brancourt-Hulmel M, Denis J-B, Lecomte C (2000) Determining
environmental covariates which explain genotype environment
interaction in winter wheat through probe genotypes and
biadditive factorial regression. Theor Appl Genet 100:285–298

Brancourt-Hulmel M, Lecomte C, Denis J-B (2001) Choosing probe
genotypes for the analysis of genotype-environment interaction
in winter wheat trials. Theor Appl Genet 103:371–382

Brancourt-Hulmel M, Lecomte C (2003) Effect of environmental
variates on genotype x environment interaction of winter wheat:
a comparison of biadditive factorial regression to AMMI. Crop
Sci 43:608–617

Decoux G, Denis J-B (1991) Intera. Logiciels pour l’interprétation
statistique de l’interaction entre deux facteurs. Laboratoire de
biométrie, INRA, 78026 Versailles cedex

Denis J-B (1989) Two-way analysis using covariates. Statistics
19:123–132

Denis J-B (1991) Ajustement de modèles linéaires et bilinéaires sous
contraintes linéaires avec données manquantes. Rev Stat Appl
34:5–24

Denis J-B, Vincourt P (1982) Panorama des méthodes statistiques
d’analyse des interaction génotype X milieu. Agronomie 2
(3):219–230

Desclaux D (1996) De l’intérêt de génotypes révélateurs de facteurs
limitants dans l’analyse des interaction génotype x milieu chez
le soja (Glycine max. L. Merrill). Thèse de doctorat, Institut
National Polytechnique de Toulouse

Finlay KW, Wilkinson GN (1963) The analysis of adaptation in
plant-breeding programme. Aust J Agric Res 14:742–754

Foucteau V, El Daouk M, Baril C (2001) Interpretation of genotype
by environment interaction in two sunflower experimental
networks. Theor Appl Genet 102:327–334

Gate P (1995) Ecophysiologie du blé-de la plante à la culture,
techniques and Documentation. Lavoisier, Paris, p429

Gauch HG (1992) Statistical analysis of regional yield trials: AMMI
analysis of factorial designs. Elsevier, Amsterdam

Gollob HF (1968) A statistical model which combines features of
factor analytic and analysis of variance techniques. Psychome-
trika 3:73–116

Mandel J (1969) The partitioning of interaction in analysis of
variance. J Res Nat Bur Stand (US) 738(4):309–327

Ottman MJ, Doerge TA, Martin EC (2000) Durum grain quality as
affected by nitrogen fertilization near anthesis and irrigation
during grain fill. Agron J 92:1035–1041

Reynolds MP, Trethowan R, Crossa J, Vargas M, Sayre KD (2002)
Physiological factors associated with genotype by environment
interaction in wheat. Field Crops Res 75:139–160

SAS Institute (1996) SAS/STAT User’s Guide, 2nd edn. SAS
Institute Inc., Cary

Soltner D (2000) Les bases de la production végétale, Tome1, Le sol
et son amélioration, Sciences et techniques agricoles, Saintes-
Gemmes-Sur-Loire, p472

Strong WM (1982) Effect of late application of nitrogen on the yield
and protein content of wheat. Aust J Exp Agric Anim Husb
22:54–61

Vargas M, Crossa J, Eeuwijk FA van, Ramirez ME, Sayre K (1999)
Using partial least squares, factorial regression, and AMMI
models for interpreting genotype × environment interaction.
Crop Sci 39:955–967

Wuest SB, Cassman KG (1992) Fertilizer-nitrogen use efficiency of
irrigates wheat: I. Uptake efficiency of preplant versus late-
season application. Agron J 84:682–688

Yates F, Cochran WG (1938) The analysis of groups of experiments.
J Agric Sci (Camb) 28:556–580

1640


	Environment characterisation for the interpretation of environmental effect and genotype × environment interaction
	Abstract
	Introduction
	Materials and methods
	Data collection
	Plant nitrogen nutrition and development stage
	Agronomic diagnosis
	Statistical methods
	Clustering model
	Multiplicative model


	Results
	Environmental covariates
	GPC variation
	Biennial network analysis
	Clustering analysis on environment main effect
	Clustering analysis on G×E interaction

	Discussion
	Conclusion
	References



